arrow grid linear view icon
The College of Arts Sciences

You are here

Michelle Wang

Professor and Howard Hughes Medical Institute Investigator

photo of Michelle Wang

Clark Hall, Room 518

Educational Background

B.S., 1985, Nuclear Physics, Nanjing University. Ph.D. student, 1985-86, Institute of Physics, Chinese Academy of Sciences. M.S, 1988, Physics, University of Southern Mississippi. Ph.D., 1993. Biophysics, University of Michigan at Ann Arbor. Postdoctoral Fellow, Biophysics, Princeton University, 1994-97. Assistant Professor, Physics, Cornell University, 1998-2004. Associate Professor, Physics, Cornell University, 2004-2009. Professor, Physics, Cornell University, 2009-present. Outstanding Student Award, Nanjing University, 1985. University of Michigan Biophysics Fellowship, 1988-89. National Cancer Institute Fellowship, 1994. Damon Runyon-Walter Winchell Foundation Postdoctoral Fellowship, 1995-97. Damon Runyon Scholar Award, 1999-00. Dale F. and Betty Ann Frey Scholar of the Damon Runyon-Walter Winchell Foundation, 1999. Alfred P. Sloan Research Fellow, 1999-01. Beckman Young Investigator Award, 1999-02. Keck Foundation Distinguished Young Scholar in Medical Research Award, 2000-07. Provost's Award for Distinguished Scholarship, 2008. Fellow, American Physical Society, elected 2009. Howard Hughes Medical Institute Investigator, 2008-present.


Molecular Mechanics of Fundamental Biological Processes

Fundamental biological processes require the concurrent occupation of DNA by numerous motor proteins and complexes. Thus, collisions, congestion, and roadblocks are inescapable on these busy ‘molecular highways’. The consequences of these traffic problems are diverse, requiring complex molecular mechanisms to resolve threats to genome stability and ensure cellular viability. Additionally, the molecular highways are continually and dynamically restructured during these processes, altering highway topology and traffic flow.  

My laboratory focuses on the motion, dynamics and mechanics of DNA roadblocks, how DNA motor proteins collide and navigate through roadblocks, and DNA topology during transcription and replication. These highly complex problems require the development of real‐time techniques to decipher the actions of multiple players, while also simultaneously allowing the ability to mechanically control, alter, and measure DNA topology.  To work with biological motors and DNA at the single molecule level, we develop and utilize state-of-the-art (and often one-of-a-kind) instruments spanning optical trapping, magnetic tweezers, and nanophotonics.  These allow us to directly measure molecular extensions, forces, and torques on the scales of nanometers, piconewtons, and piconewton×nanometers.  We also combine our novel measurements with statistical mechanical models to better elucidate the mechanisms of these molecular machines.

Our precision measurements and models have enabled novel insights into the complex coordination of cellular machineries and the fundamental role of DNA mechanics and topology – including measurements of RNA polymerase torque generation capacity, mechanistic insights into lesion bypass during replication and subsequent re-initiation, and the intricate coordination mechanisms between RNA polymerase and the replisome or motor proteins.

Research Group webpage


  • Physics

Graduate Fields

  • Applied and Engineering Physics
  • Biochemistry, Molecular and Cell Biology
  • Biophysics
  • Physics


  • Laboratory of Atomic and Solid State Physics (LASSP)