Overview
Ultracold atomic gases, quantum optics, strongly correlated matter, and exotic quantum phenomena.
Research Focus
I study the theory of atoms cooled to nK temperatures. At these temperatures, the classical image of atoms as small billiard balls must be replaced by a quantum mechanical picture of wave-packets. Although I am focused on basic science questions, this research may impact applications in quantum computing, precision measurement, and navigation.
I am particularly interested in how simple inter-atomic interactions lead to complex collective behavior. I am driven by a belief that studying these atomic systems can help refine our understanding of fundamental physics.
Much of my recent efforts have been dedicated to finding ways of taking important physics from other fields (solid state physics, nuclear physics, and high energy physics) and asking how one can design cold atom experiments to elucidate the phenomena.
My group works closely with a number of experimentalists, both at Cornell and elsewhere. We use an eclectic blend of analytic and numerical techniques.
Graduate Students
Darren Pereira
Awards and Honors
- Robert A and Donna B Paul Award for excellence in advising 2013
- Fellow, American Physical Society, 2015
Professional Experience
- Postdoctoral fellow, Physics, The Ohio State University 2001-2003.
- Assistant Professor, Physics, Cornell, 2003-2009.
- Associate Professor, Physics, Cornell, 2009-2015.
- Professor, Physics, Cornell, 2015-Present.
- Director, Laboratory of Atomic and Solid State Physics 2015-2023. Alfred P. Sloan Fellow, 2005-2007.
Publications
Selected Publications
Patrick M. Harrington, Erich Mueller, Kater Murch, Engineered Dissipation for Quantum Information Science, Nature Reviews Physics 4, 660 (2022).
Thomas G. Kiely, Erich J. Mueller, Transport in the two-dimensional Fermi-Hubbard model: Lessons from weak coupling, Phys. Rev. B 104, 165143 (2021).
Eliot Kapit, Paul Ginsparg, Erich Mueller, Non-Abelian Braiding of Lattice Bosons, Phys. Rev. Lett. 108, 066802 (2012) (arXiv:1109.4561)
Yean-an Liao, Ann Sophie C. Rittner, Tobias Paprotta, Wenhui Li, Guthrie B. Partridge, Randall G. Hulet, Stefan K. Baur, Erich J. Mueller, Spin-Imbalance in a One-Dimensional Fermi Gas, Nature 467, 567 (2010) (arXiv:0912.0092)
Erich J. Mueller, Artificial electromagnetism for neutral atoms: Escher staircase and Laughlin liquids, Phys. Rev. A, 70, 041603 (2004)
Tin-Lun Ho, Erich J Mueller, High Temperature Expansion Applied to Fermions near Feshbach Resonance, Phys. Rev. Lett. 92, 160404 (2004); (cond-mat/0306187)
In the news
- Sound drives ‘quantum jumps’ between electron orbits
- In helium-three, superfluid particles pair ‘like a dance in space’
- Promising quantum state found during error correction research
- Discovering the secrets of ultracold atoms in Italy
- Weak coupling shows flaw in strange metal model
- $2M in New Frontier Grants boost high-impact A&S research
- Superfluid shows more surprising phenomena
- Researchers pave an enlightened path to anyons and quantum computation
- Surprising nature of quantum solitary waves revealed
PHYS Courses - Fall 2024
- PHYS 4480 : Computational Physics
- PHYS 4490 : Independent Study in Physics
- PHYS 7680 : Computational Physics