arrow grid linear view icon
The College of Arts Sciences Search

You are here

Eun-Ah Kim

Associate Professor

Clark Hall, Room 507
511 Clark Hall

Educational Background

B.S., Physics, 1998, Seoul National University. M.S., Physics, 2000, Seoul National University. Ph.D., Physics, 2005, University of Illinois at Urbana-Champaign. Postdoctoral Scholar, Stanford University, 2005-2008. Assistant Professor, Physics, Cornell University, 2008-2014. Associate Professor, Physics, Cornell University, 2014-present. Excellence in Teaching Award, University of Illinois at Urbana-Champaign, 2005. John Bardeen Award, University of Illinois at Urbana- Champaign. NSF CAREER Award, 2010-2014. DOE CAREER Award, 2012-2017.



Strongly correlate systems, specifically High Temperature Superconductivity, Quantum Criticality, Topological phases


  • Physics

Graduate Fields

  • Physics


  • Laboratory of Atomic and Solid State Physics (LASSP)


My research interests lie in the theoretical study of the collective phenomena condensed matter systems exhibit, and in understanding how such phenomena emerges from microscopic physics. Especially, I have been interested in the physics of strongly correlated systems: systems consisting of many strongly interacting degrees of freedom. Strong correlations can lead to a surprisingly rich diversity of novel phenomena that are highly non-trivial from a single particle perspective. Over the last few decades, new experimental discoveries, through the development of new experimental probes and the fabrication of ever more exotic materials and devices, have been raising unexpected and conceptually deep questions. The possibility of obtaining a non-trivial understanding through a close interaction and synergy with experimental colleagues make the theoretical study of this field exciting and rich.

Among various topics that fall under the above category, I am currently focusing on 1) Fe and Cu based High Temperature Superconductivity, 2) Topological phases, 3) Application of neural network based machine learning.

These are complex and challenging problems which require a variety of theoretical approaches.  One system could display more than one of the above intriguing phenomena. My group will pursue much needed understanding of major open problems through simple but relevant model problems amenable to solutions using basic tools, as well as through problems that require sophisticated analytical and numerical tools. 

Graduate Students
Jordan Venderley, Aaron Hui and Mike Matty

Jian-Huang She and Yi (Frank) Zhang



Y. Zhang and E.-A. Kim, “Quantum Loop Topography for Machine Learning”, Phys. Rev. Lett. 118 (2017) 216401 (Featured in Physics Viewpoint).

Y.-T. Hsu, A. Vaezi, M.H. Fischer, E.-A. Kim, “Topological Superconductivity in Monolayer Transitionmetal Dichalcogenides”, Nat. Comm. 8 (2017) 14985.

A. R. Mellnik, J. S. Lee, A. Richardella, J. L. Grab, P. J. Mintun, M. H. Fischer, A. Vaezi, A. Manchon, E.-A. Kim, N. Samarth, and D. C. Ralph, “Spin Transfer Torque Generated by the Topological Insulator Bi2Se3,” Nature 511 (2014) 449.

M. J. Lawler, K. Fujita, J. Lee, A. R. Schmidt, Y. Kohsaka, C. K. Kim, H. Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, E.-A. Kim, “Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states,” Nature 466 (2010) 347.

E.-A. Kim and A. Castro-Neto, “Graphene as an electronic membrane,” Euro. Phys. Lett. 84  (2008), 57007.