Department of Physics
Cornell Days 2018
April 12 – 13, 16-20, and 23, 2018

Thursday, April 12
- **9:05-9:55 or 11:15-12:05**
 - PHYS 2213 – Physics II, Electromagnetism with Alan Giambattista, 201 Rockefeller Hall
 - ~300 students; introductory sequence for scientists and engineers, including physics majors
- **11:00-Noon**
 - Office Hours with Professor Katja Nowack, 524 Clark Hall

Friday, April 13
- **10:10-11:00 or 12:20-1:10**
 - PHYS 1112 – Physics I: Mechanics and Heat with Robert Fulbright, 201 Rockefeller Hall
 - ~250 students; introductory sequence for scientists and engineers, including physics majors
- **10:10-11:00**
 - PHYS 1116 – Mechanics and Special Relativity with Mike Niemack, 231 Rockefeller Hall
 - ~40 students; honors level, mainly but not exclusively for prospective majors in physics, astronomy, and engineering physics
- **10:10-11:00**
 - PHYS 2217-Physics II: Electricity and Magnetism with Gennady Shvets
 - 230 Rockefeller Hall
 - ~60 students; honors level, mainly but not exclusively for prospective majors in physics, astronomy, and engineering physics
- **11:00-Noon**
 - Office Hours with Professor Itai Cohen, 508 Clark Hall
- **4:15-5:45**
 - Informational Open House for prospective majors. Host: Jessi Hersh
 - 700 Clark Hall (light refreshments)

Monday, April 16
- **10:10-11:00 or 12:20-1:10**
 - PHYS 1112 – Physics I: Mechanics and Heat with Robert Fulbright, 201 Rockefeller Hall
 - ~250 students; introductory sequence for scientists and engineers, including physics majors
- **10:10-11:00**
 - PHYS 1116 – Mechanics and Special Relativity with Mike Niemack, 231 Rockefeller Hall
 - ~40 students; honors level, mainly but not exclusively for prospective majors in physics, astronomy, and engineering physics
- **10:10-11:00**
 - PHYS 2217-Physics II: Electricity and Magnetism with Gennady Shvets
 - 230 Rockefeller Hall
 - ~60 students; honors level, mainly but not exclusively for prospective majors in physics, astronomy, and engineering physics
- **11:00-Noon**
 - Office Hours with Professor Peter Wittich, 397 Physical Sciences Building

There are no events on Saturdays.
Updated 4/17/18
4:00 – 5:00 General Physics Colloquium and Parratt Lecture Professor William Irvine, University of Chicago, “The Life of Vortex Knots and Links and the Conservation of Helicity” Schwartz Auditorium, 2nd Floor Rockefeller Hall

Tuesday, April 17

9:05-9:55 or PHYS 2213 – Heat/Electromagnetism with Alan Giambattista, 201 Rockefeller Hall
11:15-12:05 ~300 students; introductory sequence for scientists and engineers, including physics majors

11:00-Noon Office Hours with Professor Kyle Shen, 532A Clark Hall

Wednesday, April 18

10:10-11:00 or PHYS 1112 – Physics I: Mechanics and Heat with Robert Fulbright, 201 Rockefeller Hall
12:20-1:10 ~250 students; introductory sequence for scientists and engineers, including physics majors

10:10-11:00 PHYS 1116 – Mechanics and Special Relativity with Mike Niemack, 231 Rockefeller Hall
~40 students; honors level, mainly but not exclusively for prospective majors in physics, astronomy, and engineering physics

10:10-11:00 PHYS 2217-Physics II: Electricity and Magnetism with Gennady Shvets
230 Rockefeller Hall
~60 students; honors level, mainly but not exclusively for prospective majors in physics, astronomy, and engineering physics

11:00-Noon Office Hours with Professor Kyle Shen, 532A Clark Hall

Thursday, April 19

9:05-9:55 or PHYS 2213 – Heat/Electromagnetism with Alan Giambattista, 201 Rockefeller Hall
11:15-12:05 ~300 students; introductory sequence for scientists and engineers, including physics majors

11:00-Noon Office Hours with Professor Kyle Shen, 532A Clark Hall

Friday, April 20

10:10-11:00 or PHYS 1112 – Physics I: Mechanics and Heat with Robert Fulbright, 201 Rockefeller Hall
12:20-1:10 ~250 students; introductory sequence for scientists and engineers, including physics majors

10:10-11:00 PHYS 1116 – Mechanics and Special Relativity with Mike Niemack, 231 Rockefeller Hall
~40 students; honors level, mainly but not exclusively for prospective majors in physics, astronomy, and engineering physics

10:10-11:00 PHYS 2217-Physics II: Electricity and Magnetism with Gennady Shvets
230 Rockefeller Hall
~60 students; honors level, mainly but not exclusively for prospective majors in physics, astronomy, and engineering physics

There are no events on Saturdays.

Updated 4/17/18
11:00-Noon Office Hours with Professor Tom Hartman, 434 Physical Sciences Building

4:15-5:45 Informational Open House for prospective majors. Host: Jessi Hersh
700 Clark Hall (light refreshments)

Monday, April 23

10:10-11:00 or 12:20-1:10 PHYS 1112 – Physics I: Mechanics and Heat with Robert Fulbright, 201 Rockefeller Hall
~250 students; introductory sequence for scientists and engineers, including physics majors

10:10-11:00 PHYS 1116 – Mechanics and Special Relativity with Mike Niemack, 231 Rockefeller Hall
~40 students; honors level, mainly but not exclusively for prospective majors in physics, astronomy, and engineering physics

10:10-11:00 PHYS 2217-Physics II: Electricity and Magnetism with Gennady Shvets
230 Rockefeller Hall
~60 students; honors level, mainly but not exclusively for prospective majors in physics, astronomy, and engineering physics

11:00-Noon Office Hours with Professor Jared Maxson, 387 Physical Sciences Building

4:00 – 5:00 General Physics Colloquium with Professor Brian Jones, PhD Cornell Physics ’85, Colorado State University-Fort Collins, “A Million Hands: Lessons from 25 Years of Physics Outreach”, Schwartz Auditorium, 2nd Floor Rockefeller Hall

Class Descriptions

PHYS 1112 Physics I: Mechanics and Heat

Forbidden Overlap: Students may receive credit for only one course in the following group: EAS 1600, PHYS 1101, PHYS 1112, PHYS 1116, PHYS 2207.
Prerequisite: MATH 1910, or MATH 1120, or MATH 1220. Recommended corequisite: MATH 1920 in order to continue with PHYS 2213 the following semester. Corequisite: MATH 1910 may be allowed by instructor in exceptional cases, but continuation in PHYS 2213 will then have to be deferred until MATH 1920 is completed. Primarily for students in engineering, physics or related subjects. Students interested in majoring in Engineering Physics or Physics, and who have a strong physics and mathematics background are encouraged to consider PHYS 1116.

First course in a three semester introductory physics sequence. Covers the mechanics of particles with focus on kinematics, dynamics, conservation laws, central force fields, periodic motion. Mechanics of many-particle systems: center of mass, rotational mechanics of a rigid body, and static equilibrium. Temperature, heat, the laws of thermodynamics. At the level of University Physics, Vol. 1, by Young and Freedman.

PHYS 1116 Physics I: Mechanics and Special Relativity

Forbidden Overlap: Students may receive credit for only one course in the following group: EAS 1600, PHYS 1101, PHYS 1112, PHYS 1116, PHYS 2207. In addition, students may not receive credit for both PHYS 1116

There are no events on Saturdays.
Updated 4/17/18
and PHYS 2216.
Prerequisite: good secondary school physics course, proficiency with basic calculus (at the level of MATH 1910 or MATH 1120), and enjoyment of puzzle-solving. More mathematically and conceptually sophisticated than PHYS 1112; intended for students who are comfortable with a deeper, somewhat more abstract approach; intended mainly but not exclusively for prospective majors in physics, astronomy, or applied and engineering physics. Corrective transfers between PHYS 1116 and PHYS 1112 (in either direction) must occur during the first two weeks of instruction.

First in a three semester introductory physics sequence. Explores quantitative modeling of the physical world through a study of mechanics. More mathematical and abstract than a typical mechanics course - for example, considers how choice of coordinate system (Cartesian, cylindrical, etc.) influences the nature of kinematical equations. Fast paced. Includes kinematics, dynamics, conservation laws, inertial and noninertial frames, central force fields, periodic motion, and special relativity. At the level of An Introduction to Mechanics by Kleppner and Kolenkow.

PHYS 2213 Physics II: Electromagnetism

Forbidden Overlap: Students may receive credit for only one course in the following group: AEP 2170, PHYS 1102, PHYS 2208, PHYS 2213, PHYS 2217.
Prerequisite: PHYS 1112 (or strong performance in PHYS 2207) and MATH 1920, or MATH 2220, or MATH 2240. Primarily for students of engineering, physics and related disciplines. PHYS 2217 presents a more advanced view of the subject.

Second in a three semester introductory physics sequence. Topics include electrostatics, behavior of matter in electric fields, DC circuits, magnetic fields, Faraday's law, AC circuits, and electromagnetic waves. At the level of University Physics, Vol. 2, by Young and Freedman, 13th ed.

PHYS 2217 Physics II: Electricity and Magnetism

Forbidden Overlap: due to an overlap in content, students may receive credit for only one course in the following group: AEP 2170, PHYS 1102, PHYS 2208, PHYS 2213, PHYS 2217.
Prerequisite: strong performance in PHYS 1116 or very strong performance in PHYS 1112, and vector calculus at the level of MATH 1920, MATH 2220, or MATH 2240. Mathematics prerequisites can be waived with at discretion of instructor. Students from PHYS 1112 should coregister in PHYS 2216, and consult with instructor. More mathematically sophisticated than PHYS 2213. Enrollment may be limited. Intended mainly but not exclusively for prospective majors in physics, astronomy, or engineering physics. AP physics alone is typically not adequate preparation for this course: students interested in taking PHYS 2217 are strongly encouraged to first take PHYS 1116.

Second in a three semester introductory physics sequence. Explores quantitative modeling of the physical world through a study of electricity and magnetism. More mathematical and abstract than a typical introductory electricity and magnetism course. Topics include electrostatics, behavior of matter in electric fields, circuits, magnetic fields, Faraday's law, AC circuits, and electromagnetic waves. Makes substantial use of vector calculus. At the level of Electricity and Magnetism by Purcell.